

### I. IDENTIFICACIÓN

| Nombre Asignatura: |            | TEORÍA DE LA MEDIDA |                                                     |       |             |                   |          |  |
|--------------------|------------|---------------------|-----------------------------------------------------|-------|-------------|-------------------|----------|--|
| Código:            | 390        | 0164                | Tipo de Curso:                                      | C     | Obligatorio | X EI              | ectivo 🗆 |  |
| Programa           | Ma         | ngíster en M        | latemáticas con Menc                                | iones | Facultad:   | Cie               | encias   |  |
| № Crédito<br>SCT:  | S          |                     | otal de horas cronológio<br>otal de horas pedagógio |       | 240<br>360  | Año/<br>semestre: | 1/2      |  |
| Horas pres         | senciales: | 108                 |                                                     | Н     | oras trabaj | o autónomo:       | 252      |  |

# II. DESCRIPCIÓN Relación de la asignatura con el perfil del graduado

Teoría de la Medida es una actividad curricular, de carácter obligatoria de naturaleza teórica, ubicada en el segundo semestre del primer año. Su propósito es familiarizarse con teoremas clásicos del área, tales como los teoremas de paso al límite bajo el signo integral (teoremas de convergencia dominada, convergencia monótona, Teorema de Bepo-Levi), Teorema de Radon-Nikodin, y aplicarlos en análisis funcional, ecuaciones diferenciales y otros diversos campos de la matemática pura y aplicada. Al finalizar la asignatura el graduado estará habilitado para aplicar conceptos y resultados de la Teoría de la medida usando una estructura matemática rigurosa para demostrar diversos problemas del análisis matemático.

Este curso contribuirá a las siguientes competencias del Perfil del graduado/a:

C2: Aplicar conocimiento avanzado en Matemática Aplicada o Estadística, mediante el diseño, integración y evaluación de información en diversas fuentes, contribuyendo al desarrollo del área a través de la investigación científica.



# III. Resultados de Aprendizaje.

| Resultados de<br>Aprendizaje (RA)                                                                                                                             | Contenidos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metodología                                                                                                                                 | Sistema de<br>Evaluación                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tiempo<br>Presencial<br>(Hrs) | Tiempo<br>Autónomo<br>(Hrs) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|
| RA1: Aplica las nociones de sigma-álgebra, medida de conjuntos, y de integral de Lebesgue al entendimiento de problemas matemáticos, para demostrar teoremas. | Conceptual:  -Definiciones elementales de:  Anillo de conjuntos,  Sigma álgebra de conjuntos,  Función de Conjunto,  Medida, Integral de Lebesgue de funciones simples medibles, Integral de Lebesgue de Funciones medibles positivas.  -Integral de Lebesgue de funciones generales.  -Teoremas de Paso al límite bajo el signo integral: teoremas de convergencia dominada, convergencia monótona, Teorema de Bepo-Levi.  -Funciones de variación acotada.  -Teorema de diferenciación de Lebesgue.  -Continuidad absoluta y teorema fundamental del cálculo. | -Clases expositivas.  -Discusión socializada.  -Trabajo colaborativo -Resolución de problemas (Tareas, Guías), -Investigación bibliográfica | Criterios:  -Adapta los teoremas de Cambio de Variable, fórmula de integración por partes a las integrales de Riemann Stieltjes.  -Aplica de los teoremas de Paso al límite bajo el signo integra en una integral de Riemann-Stieltjes.  -Aplica la integral de Riemann-Stieltjes.  -Aplica la integral de Riemann de Riemann de Riemann Stieltjes a la resolución de problemas diversos del análisis matemático.  A través de :  -Tareas  -Exposiciones  -Evaluaciones escritas | 36                            | 84                          |



| Cargasi                 |     |  |
|-------------------------|-----|--|
| -Cargas:                | 35% |  |
| descomposición de       |     |  |
| Hahn y de Jordan.       |     |  |
| Tabuana di Bid          |     |  |
| -Teorema de Radon       |     |  |
| Nikodym.                |     |  |
|                         |     |  |
| Procedimentales:        |     |  |
| -Aplicación de las      |     |  |
| definiciones            |     |  |
|                         |     |  |
| fundamentales a         |     |  |
| problemas               |     |  |
| relacionados con la     |     |  |
| integral de Lebesgue y  |     |  |
| sus propiedades.        |     |  |
| Jas propicadaes.        |     |  |
| -Aplicación de los      |     |  |
| conceptos de            |     |  |
| Funciones de variación  |     |  |
|                         |     |  |
| •                       |     |  |
| herramientas tales      |     |  |
| como el Teorema de      |     |  |
| diferenciación de       |     |  |
| Lebesgue a problemas    |     |  |
| del análisis            |     |  |
| matemático.             |     |  |
|                         |     |  |
| -Identificación de una  |     |  |
| función                 |     |  |
| absolutamente           |     |  |
|                         |     |  |
| continua y utiliza el   |     |  |
| teorema fundamental     |     |  |
| del cálculo para        |     |  |
| resolver problemas.     |     |  |
|                         |     |  |
| Actitudinal:            |     |  |
| 5                       |     |  |
| -Disposición al trabajo |     |  |
| colaborativos en        |     |  |
| instancias de discusión |     |  |
| sobre tópicos           |     |  |
| abordados.              |     |  |
|                         |     |  |



| ESCUELA DE GRADUADOS |                                              |                  |                 |    |     |
|----------------------|----------------------------------------------|------------------|-----------------|----|-----|
| RA 2: Utiliza los    | Conceptuales:                                | -Clases          | -Adapta los     |    |     |
| teoremas de Paso     | <u>-</u> Integración de                      | expositivas.     | teoremas de     |    |     |
| al límite bajo el    | Stieltjes.                                   | Diamoida         | Cambio de       | 26 | 0.4 |
| signo integral en la | Stiertjes.                                   | -Discusión       | Variable,       | 36 | 84  |
| integral de          | -Definición de la                            | socializada.     | formula de      |    |     |
| Lebesgue             | integral de Riemann                          | -Trabajo         | integración por |    |     |
| unidimensional       | Stieltjes.                                   | colaborativo     | partes a las    |    |     |
| para resolver        | F                                            |                  | integrales de   |    |     |
| problemas del        | -Funciones simples                           | -Resolución de   | Riemann         |    |     |
| análisis             | como integradores.                           | problemas        | Stieltjes.      |    |     |
| matemático.          | -Funciones                                   | (Tareas, Guías), | -Aplica los     |    |     |
|                      | monótonas como                               | (Tarcas, Galas), | teoremas de     |    |     |
|                      | integradores.                                | -Investigación   | Paso al límite  |    |     |
|                      |                                              | bibliográfica.   | bajo el signo   |    |     |
|                      | -Integradores de                             |                  | integra en una  |    |     |
|                      | Variación Acotada.                           |                  | integral de     |    |     |
|                      | -Propiedades de la                           |                  | Riemann-        |    |     |
|                      | integral de Stieltjes                        |                  | Stieltjes       |    |     |
|                      |                                              |                  | Stiertjes       |    |     |
|                      | -Cambio de Variable,                         |                  | -Aplica de la   |    |     |
|                      | formula de integracion                       |                  | integral de     |    |     |
|                      | por partes en                                |                  | Riemann         |    |     |
|                      | integrales de Riemann                        |                  | Stieltjes a la  |    |     |
|                      | Stieltjes.                                   |                  | resolución de   |    |     |
|                      | -Paso al límite bajo el                      |                  | problemas       |    |     |
|                      | signo integra en una                         |                  | diversos del    |    |     |
|                      | integral de Riemann-                         |                  | análisis        |    |     |
|                      | Stieltjes.                                   |                  | matemático.     |    |     |
|                      |                                              |                  |                 |    |     |
|                      | <u>Procedimentales:</u>                      |                  |                 |    |     |
|                      | -Adaptación de los                           |                  |                 |    |     |
|                      | teoremas de Cambio                           |                  |                 |    |     |
|                      | de Variable, formula                         |                  |                 |    |     |
|                      | de integración por                           |                  |                 |    |     |
|                      | partes a las integrales                      |                  |                 |    |     |
|                      | de Riemann Stieltjes.                        |                  |                 |    |     |
|                      | Anlicación do las                            |                  |                 |    |     |
|                      | -Aplicación de los<br>teoremas de Paso al    |                  |                 |    |     |
|                      |                                              |                  |                 |    |     |
|                      | límite bajo el signo integra en una integral |                  |                 |    |     |
|                      | de Riemann-Stieltjes.                        |                  |                 |    |     |
|                      | ac Memami-Suerges.                           |                  |                 |    |     |
|                      | -Aplicación de la                            |                  |                 |    |     |
|                      | integral de Riemann                          |                  |                 |    |     |
|                      | Stieltjes a la resolución                    |                  |                 |    |     |
|                      | de problemas diversos                        |                  |                 |    |     |



| RA3: Aplica los   | Conceptuales:                   | -Clases         | -Identifica de                 | 36 | 84       |
|-------------------|---------------------------------|-----------------|--------------------------------|----|----------|
| conceptos de      | -                               | expositivas.    | conjuntos                      |    | <b>.</b> |
| medidas producto  | Medidas producto                | •               | medibles en                    |    |          |
| teorema de        | -Funciones medibles y           | -Discusión      | R^n.                           |    |          |
| Fubbini y Toneli  | conjuntos medibles en           | socializada.    | A . I'                         |    |          |
| para calcular     | R^n                             | -Trabajo        | -Aplica los                    |    |          |
| Integrales sobre  |                                 | colaborativo    | teoremas de                    |    |          |
| espacios producto | -Reducción a                    |                 | Fubini y Tonelli para calcular |    |          |
| como integrales   | integrales iteradas:            | -Resolución de  | integrales de                  |    |          |
| iteradas.         | Teoremas de Fubini y<br>Tonelli | problemas(Tarea | Lebesgue en                    |    |          |
|                   | TOHEIII                         | s, Guías), -    | R^n.                           |    |          |
|                   | -Cambios de                     | Investigación   |                                |    |          |
|                   | coordenadas en                  | bibliográfica   | -Aplica el                     |    |          |
|                   | integrales múltiples de         |                 | Teorema de                     |    |          |
|                   | Lebesgue.                       |                 | Cambio de                      |    |          |
|                   | Procedimentales:                |                 | coordenadas en                 |    |          |
|                   |                                 |                 | integrales                     |    |          |
|                   | Identificación de               |                 | múltiples de                   |    |          |
|                   | conjuntos medibles en           |                 | Lebesgue para Calcularlas.     |    |          |
|                   | R^n.                            |                 | Calcularias.                   |    |          |
|                   | -Aplicación los                 |                 | A través de:                   |    |          |
|                   | teoremas de Fubini y            |                 | -Tareas                        |    |          |
|                   | Tonelli para calcular           |                 | - Tai Cas                      |    |          |
|                   | integrales de                   |                 | -Exposiciones                  |    |          |
|                   | Lebesgue en R^n.                |                 |                                |    |          |
|                   | -Utilización del                |                 | -Evaluaciones                  |    |          |
|                   | Teorema de Cambio               |                 | escritas                       |    |          |
|                   | de coordenadas en               |                 |                                |    |          |
|                   | integrales múltiples de         |                 | 30%                            |    |          |
|                   | Lebesgue para                   |                 | 30,0                           |    |          |
|                   | Calcularlas                     |                 |                                |    |          |
|                   | A                               |                 |                                |    |          |
|                   | Actitudinales:                  |                 |                                |    |          |
|                   | -Disposición al trabajo         |                 |                                |    |          |
|                   | colaborativos en                |                 |                                |    |          |
|                   | instancias de discusión         |                 |                                |    |          |
|                   | sobre tópicos                   |                 |                                |    |          |
|                   | abordados.                      |                 |                                |    |          |



## IV. BIBLIOGRAFÍA

#### **Fundamental:**

- 1. Royden H. and Fitzpatrick P. Real Analysis 4 edition 2017 Pearson;
- 2. Cohn D. Measure Theory; 2nd ed. 2013 Birkhäuser
- 3. Tao T. An Introduction to Measure Theory American Mathematical Society; New ed. edition 2011.

# Complementaria

- 1. Apostol, T.M., Mathematical Analysis, 2004, Ed. Addison Wesley.
- 2. Kolmogorov, A.N. y Fomin S.V., 1972, Elementos de la Teoría de Funciones y Del Análisis Funcional, Ed. MIR.
- 3. Berezansky, Y.M., Functional Analysis, Vol 1, 1991, Ed. Birkhauser-Verlag, Berlin.
- 4. Stromberg, K.R., Introduction to Classical Real Analysis, 1981,Ed. Wadsworth.