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SOLIDIFICATION IN SQUARE SECTION

SOLIDIFICACION EN SECCIÓN CUADRADA

CARLOS HERNÁN SALINAS LIRA1

ABSTRACT

The objective of the present work is to develop a numerical model to analyze melting solidification process
considering the natural convection phenomena to an alloy metal in a square section. Physical medium is
taken as incompressible Newtonian fluid with isotropy thermal properties where the heat is transferred by
conduction and convection, including de thermal phase change phenomenon. The last one is modeled by
the improvement procedure, called Enthalpy Model, based on the fraction solid function which liberates the
latent heat according to fraction of solid particles generated using as parameter the temperature level. The
mathematical model is based on a non-linear second order differential partial equation system: Momentum,
continuity, heat transfer equations and a set of auxiliary expressions with the purpose of equation system
closure or applied the boundary and interface condition. The numerical model is based on Volume Finite
Method in body fitted coordinates with a SIMPLER scheme to join pressure and velocities. The strategy
study allows the two-dimensional solidification of alloy aluminum (Non-Isothermal Solidification) in square
section. Unsteady state results are shown in the way: Streamlines and isotherms compared with available data
after performing a consistency analysis.
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1. INTRODUCTION

This paper presents a study about solidifi-
cation of alloy aluminum that is known in
the literature as solid-liquid phase-change
problem. Considerable researches have been
focused in this problem because of their sci-
entific and practical significance in material
processing: Purification of metal, continuum
casting, high temperature super conducting

crystals, etc. (See Rohatgi, 1988 and Murphy
et al., 1988). The physical aspects of solidi-
fication process are reviewed by Beckerman
and Viskanta (1993) with a discussion of
the principal topic in numerical simulation
at macroscopic scale. Explicit modeled by
average volume method are given.

The classical analytical analysis for the
solidification problem is so called Stephan
Problem, which accept solution for few lim-
ited cases that are reviewed by Alexiades and
Solomon (1993). The simplest problem is
to study heat transfer by conduction with-
out convection effects (Lazaridis, 1970;
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Hsiao, 1985). Today with the improvement
of computational fluid dynamics it has been
possible to analyze the convection effects
through direct numerical simulation using
several finite methods (Kurz and Fisher,
1998). One of the first investigations in this
line was presented by Sparrow et al. (1977).

The historical of finite methods has two
basic direction: The fixed grid methods are
easier which are used mainly by researchers
who work with Finite Difference and Finite
Volume (Wolff and Viskanta, 1988) tech-
niques. The second direction is the multi
domain method naturally preferred by re-
searchers who use Finite Elements Analysis
(McDaniel and Zabaras, 1994). Adaptive
grid techniques and explicitly determination
of interface are required in the last case. Fur-
thermore, the most recent research using
mixed numerical model like Average Volume
Method (Bekerman and Viskanta, 1993) or
by explicit determination of interface using
a fixed grid as presented by Chun and Park
(2000). Relative merit of fixed grid and multi
domain methods has been discussed in lit-
erature (Salcudean and Aduallah, 1988;
Lacroix and Voller, 1990).

Of course, the simple domain solution
in a fixed grid for any kind of numerical
method is easier to work and it saves com-
puter time. The problem with explicit de-
termination of front tracking are convection
effects of grid moving and high curvature of
interface position which can produced in-
stability in the numerical solution and in-
troduced unnecessary errors. However, the
problem is not how to discrete the math-
ematical model, but how to simulate the la-
tent heat liberation, that happens at micro
scales, to produce desirable macroscopic
physical effects. This is specially important
in mushy zone for non-isothermal solidifi-
cation and capturing front tracking for iso-
thermal solidification. For instance, the
Enthalpy Method like presented by Swami-
nathan and Voller (1993) gives the same

tools to work in a simple and consistent way
for macroscopic formulation.

In this work the improvement enthalpy
method is used for modeling the interchange
of latent heat where the sensible heat is in-
creased by latent heat liberated according to
a liquid-solid phase-change fraction as func-
tion of temperature. The domain is discrete
in a fixed grid without explicit formulation
for interface. The mushy zone is modeled
by partial latent heat liberation and modifi-
cation the viscosity according to an inverse
relation of solid-fraction in the solid-liquid
temperature range. Solid boundaries are
fixed to finite volumes, which has tempera-
ture under solid temperature.

Two dimension non-linear heat transfer,
momentum and continuity equations form
a second order non-linear partial differential
system equation which is solved by numeri-
cal procedure using finite volume method
with algorithms developed by authors in
Salinas (1996) and Moraga and Salinas (1999).
For instance, results of Non-isothermal so-
lidification of alloy aluminum in a square
section problem are shown by unsteady iso-
thermal and streamline curves, previous to
a grid size consistency analysis.

2. THE PHYSICAL PROBLEMS

The physical liquid-solid phase-change
problem for alloy aluminum in square sec-
tion studied is showed in the Fig. 1 with
properties summarized in table I. The Fig.
1 shows a schematic view of alloy aluminum
solidification in square section considering
as boundary condition three adiabatic wall
and imposed cold temperature at fourth left
vertical wall. The initial condition for this
non-isothermal phase-change problem are
the rest flow and temperature equal to 700
[ºC] considering at left vertical wall an im-
posed cold temperature equal to 500ºC.
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3. THE MATHEMATICAL MODEL

The mathematical model for two dimension
liquid-solid phase-change problem, included
the natural convection, in a simple domain
solution considering alloys aluminum ma-
terial is based on the Continuity, Linear
Momentum and energy equations is pre-
sented by Eqs.(1-4). It is supposed incom-

pressible Newtonian fluid with properties
constants (See table I) except the density
evaluated as linear function of temperature
by Boussinesq approximation. The enthalpy
method (Swaminathan and Voller, 1993) is
used to model the phase-change latent heat
liberation by using a liquid-solid fraction
function (Raw and Lee, 1991).

Figure 1. Scheme of liquid-solid phase-change prob-
lems in square section.

Where: u, v, p and T are the dependent
variables for the velocity components, pres-
sure and temperatures respectively, and µ,
ρ, κe, L, fpc and cp are the material properties

of dynamic viscosity, density, effective ther-
mal conductivity, phase-change enthalpy,
liquid-solid fraction function and specific
heat, respectively.

Table 1. Physical properties of alloy aluminum.

Properties Alloy Aluminum

Density 2500 [kg/m3]
Conductivity 100 [W/m ºC]
Specific heat 1000 [W/Kg ºC]
Phase-change enthalpy 4.0*105 [J/kg ºC]
Solid temperature 550 [ºC]
Liquid Temperature 650 [ºC]
Dynamic viscosity 2.5*10-3 [kg/m s]
Thermal expansion coefficients 4.0*10-5 [1/ºC]
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3.1. Initial and Boundary Conditions

The initial and boundary condition are given
below according to of non-isothermal solidi-

fication of alloy aluminum in square section
problem.

For this formulation a linear liquid-solid
fraction function is used with increased of

viscosity in mushy zone according to inverse
function of liquid-solid fraction value.

Where the TL and TS are the temperature
de liquid and solid of alloy respectively.

When the conductivity is space variable
(mushy zone) then is necessary an improve-
ment procedure to model correctly the heat
transfer conduction which is performed by
introduction next effective conductivity ob-
tain of conductivity boundary condition in

interfaces (See Moraga and Salinas, 1999).
This way, the following expression for in-
terface temperature Tw and effective conduc-
tivity ke, see Fig. 2, are obtained according
to evaluated in a conservative form the heat
flow in each face of the finite volume ele-
ments.

u = 0
Initial condition v = 0

T = 700 ºC{
u = 0 ; v = 0  to
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The Eqs.(1-4) form a system of four par-
tial differential equations that model fluid
mechanics and heat transfer of liquid-solid
phase-change process under initial and
boundary condition described above. This
mathematical model is solved in a numeri-
cal form as explained in the next section.

4. NUMERICAL MODEL

The computational fluid dynamics algo-
rithm was developed by the author in Sali-
nas (1996) and modified to include the
calculation of heat transfer in Moraga and
Salinas (1999). In this section the main as-
pect of the algorithms, particular values of
parameters are given.

The algorithm is developed in body fit-
ted coordinates system generated by a Pois-
son equation with the stretching function
described in Thompson et al. (1985) and
implemented in Salinas (1996). After trans-
forming the system of equations the Finite
Volumes Method (FVM) is applied to ob-
tain the discrete system of equations. To
couple the continuity and Navier-Stokes
equations the SIMPLER algorithm

(Patankar, 1980) is used. A staggered grid is
used to represent the variables considering
T, p and physical properties in the center of
each control volume while the velocity com-
ponents and heat fluxes are calculated in the
faces of the finite volumes. The terms of diffu-
sion (second order derivatives) and Laplacian
operator are calculated through a central dif-
ference scheme, the convection terms (first
order derivatives) are evaluated through the
power law interpolation (Patankar, 1980), and
the transient terms are calculated in an im-
plicit way by using a backwards difference
procedure. The non-linear system equation
is linearized by using values of the proper-
ties obtained in the previous iteration and
Crank-Nicolson procedure for the convec-
tion terms (Lapidus and Pinder, 1982). Af-
terwards the linear systems of equations are
solved by the iterative Gauss-Seidel method
with successive relaxation. Relaxation factors
equals to 0.65, 0.55 and 0.55 for p, T, u and
v, respectively are used. Generally not more
that three SIMPLER cycles and around 103

iterations for each linear system are adequate
in order to obtain convergence with maxi-
mum local deviation for u, v, p and T equal
to 7.0E-3%.

Figure 2. Interface Scheme.
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5. VALIDATIONS OF FLUID
MECHANICS AND HEAT

TRANSFER CALCULATIONS

The transient evolution of natural convec-
tion of air in a square cavity (Satya Sai and
Seetharamu, 1994) was used to validate the
fluid mechanics and heat transfer. The re-
sults for Rayleigh numbers equal to 104, 105

and 106are presented in Moraga and Salinas
(2000).

A consistence analysis is performed to
study convergence. For this instance non-

isothermal solidification problem is used
showing results in the Figs. 3-5. In the Fig.
3 and Fig. 4 can see a good convergence in
relation to grid size 40x40 in relation to
coarse grid 20x20 and fine grid 60x60 when
is analyzed local center vertical velocity and
centerline temperature at indicated time. In
transient temperature at center point, showed
by Fig. 5 for several grid size, is observed a
convergence to grid size 40x40 too which is
very close to temperature curve obtained
with grid size equal 60x60. This convergence
study can been concluded that a grid size
60x60 is good grid to used.

Figure 3. Centerline temperature v/s grid size at t=50 s.
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Figure 5. Center time temperature v/s grid sizes.

Figure 4. Vertical centerline velocity v/s grid size at t=50 s.

6. RESULTS AND DISCUSSION

After the consistency analysis was performed
the prediction for natural convection and
heat transfer for three liquid-solid phase-
change problems was accomplished. For all
problem a uniform grid size 60x60 with
constant time step are used

Unsteady results of Non-isothermal so-
lidification in square section obtained by the
present model are presented in Fig. 6. It

shows streamlines and isotherms for
Gr=1.0e7, Pr=0.025, St=0.5 at t=10, 40 and
80 s. Can be observed that fluid flow have a
complex and strongly unsteady development
with secondary vortex in upper region and
right under corner for initial times (show-
ing at=10 s). After that only one vortex is
formed as showed in the figure at t=40 s and
t=80 s. This results are very similar to the
one presented by Cruchaga and Celentano
(1997). Notice that, in this work is not pre-
dicted the secondary vortex.

Solidification in Square Section / CARLOS HERNÁN SALINAS L.
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Figure 6. Isotherms and streamline for alloy aluminum solidification.
(Gr=1.0e7, t=10,40 y 80 s, Pr=0.025, St=0.5, Grid size 60x60, dt=0.01 s)

t=10 s

t=40 s

t=80 s
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7. CONCLUSION

A numerical model has been developed to
solve the liquid-solid phase change problem
for non-isothermal solidification process.
Consistent numerical analysis for unsteady
temperature curve is performed. This study,
convergence results using grid size equal to
60x60 was obtained.

Numerical results of non-isothermal so-
lidification process of alloy aluminum in a
square section are similar to available nu-
merical data.

Secondary vortex are predicted by the
present method.

9. ACKNOWLEDGMENT

Financial support for this study provided by
Universidad del Bío-Bío through grant FPI
Nº 0152112 is greatly appreciated.

8. BIBLIOGRAPHY

ALEXIADES, V. and SOLOMON, A.D., 1993.
Mathematical Modeling of Melting and Freezing
Processes, chap. 2, Hemisphere Publishing Cor-
poration, Washington.

BECKERMANN C. and VISKANTA R., 1993,
“Mathematical Modeling of Transport Phenom-
ena During Alloy Solidification”, Appl. Mech. Rev,
vol 46, Nº 1, pp 1-27.

CHUN, C.K. and PARK, S.O., 1999. “A Fixed Grid
Finite-Difference Method for Phase-Change
Problems”, Numerical Heat Transfer, Part B,
38:59-73,200.

CRUCHAGA M. and CELENTANO D., 1997.
“Thermally Coupled Incompressible Flow For-
mulation With Phase-Change Effects”, Tenth
Inter. Conference on Thermal Problem, U.K.

HSIAO, J.S., 1985. “An Efficient Algorithm for Fi-
nite Difference Analyses of Heat Transfer with
Melting and Solidification”, Numer. Heat Trans-
fer, 8: 653-666.

KURZ, W. and FISHER, D., 1998. “Fundamentals
of Solidification”, Trans Tech Publications,
Aedermannsdorf, Switzerland.

LACROIX, M. and VOLLER, V.R., 1990. “Finite

Difference Solution of Solidification Phase Change
Problems: Transformed versus Fixed Grids”, Num.
Heat Transfer, Part B, Vol. 17, pp. 25-41.

LAPIDUS, L. and PINDER, G.F., 1982. Numerical
Solution of Partial Differential Equations in Sci-
ence and Engineering, John Wiley & Sons, Inc.

LAZARIDIS, A., 1970. “Numerical Solution of the
Multidimensional Solidification (or Melting)
Problems”, Int. J. Heat Mass Transfer, Vol. 13, pp
1.459-1.477.

MCDANIEL, D.J. and ZABARAS, N., 1994. “A
Least-squares Front-Tracking Finite Element
Method Analysis of Phase Change with Natural
Convection”, Int. J. For Num. Methods in Engi-
neering, Vol. 37, 2.755-2.777.

MORAGA, N.O. and SALINAS, C. H., 1999. “A
Numerical Model for Heat and Fluid Flow in
Food Freezing”, Numerical Heat Transfer, Part A,
35: 495-518.

MORAGA, N.O. and SALINAS, C. H., 2000. “Nu-
merical Study of Unsteady 2d Natural Convec-
tion and Solidification of a Food Inside a Freezing
Chamber”, Num. Heat Transfer, Part A, 37: 755-
777.

MURPHY, D.W., JOHNSON, D.W., JIN, S. and
HOWARD R.E., 1988. “Processing Techniques
for the 93K Superconductor Ba2Ycu3O4”, Sci 241,
922-930.

PATANKAR, S.V., 1980. Numerical Heat Transfer
and Fluid Flow, Hemisphere Publishing Corpo-
ration, Washington, DC.

RAW, W.Y. and LEE, S.L., 1991. “Application of
Weighting Function Scheme on Convection-
Conduction Phase Change Problems”, Int. J. Heat
Mass Transfer, Vol. 34, Nº 6, pp. 1.503-1.513.

ROHATGI, P., 1988. Foundry Processing of Metal
Matrix Composites, Modern Casting, April, pp 47-
50.

SALCUDEAN, M. and ADUALLAH Z, 1988. “On
the Numerical Modeling of Heat Transfer Dur-
ing Solidification Processes”, Int. J. Numer. Meth-
ods Engineering, Vol. 25, pp. 445-473.

SALINAS, C.H., 1996. “Modelação de Escoamentos
Tridimensionais em Geometrias Complexas”, D.
Sc. Thesis, COPPE/PENO, UFRJ, RJ-Brazil,.

SATYA SAI, B.V.K. and SEETHARAMU, K.N.,
1994. “Solution of Transient Laminar Natural
Convection in a Square Cavity by an Explicit
Finite Element Scheme”, Numerical Heat Trans-
fer. Part A, 25, 593-609.

SPARROW, M., PATANKAR, S.V. and
RAMADHYANI, S., 1977. “Analysis of Melting
in Presence of Natural Convection in the Melt
Region”, ASME J. Heat Transfer, Vol. 99, pp. 520-
526.

Solidification in Square Section / CARLOS HERNÁN SALINAS L.



56

Theoria, Vol. 10: 2001

SWAMINATHAN, C.R. and VOLLER, V.R., 1993.
“On the Enthalpy Method”, Int. J. of Num. Heat
Fluid Flow. 3: 233-244.

THOMPSON, J.F., WARSI, A. and MASTIN,
C.W., 1985. “Numerical Grid Generation”,
Elsevier Science. Publishing.

WOLFF, F. and VISKANTA, R., 1988. “Solidifica-
tion of a Pure Metal at a Vertical Wall in the Pres-
ence of Liquid Superheat”, Int. J. Heat Mass
Transfer, Vol. 31, Nº 8, pp. 1.735-1.744.


